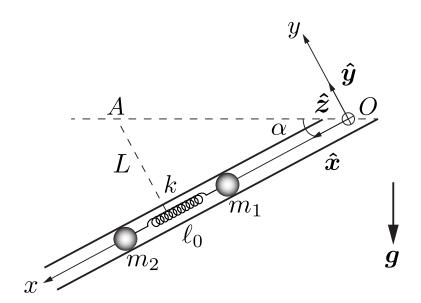


1. Billes oscillant dans un tube (3.5/10 points)

Nom:													
	_	_	_	_		_				\mathbf{N}° Sciper:			
Prénom:										•			



Dans un plan vertical, une bille considérée comme un point matériel de masse m_1 est reliée à une autre bille considérée comme un point matériel de masse m_2 par un ressort de constante élastique k et de longueur à vide ℓ_0 . Le système constitué des deux points matériels est astreint à se déplacer sans frottement le long d'un tube immobile qui fait un angle α avec la droite horizontale passant par les points O et A. On décrit la dynamique du système de points matériels par rapport au repère cartésien $(O, \hat{x}, \hat{y}, \hat{z})$. Soit $r_1 = x_1 \hat{x}$ le vecteur position du point matériel de masse m_1 , $r_2 = x_2 \hat{x}$ le vecteur position du point matériel de masse m_2 et g la norme du champ gravitationnel g. Soient $M = m_1 + m_2$ la masse totale du système, $\mu = m_1 m_2/(m_1 + m_2)$ la masse réduite du système, $\Delta m = m_2 - m_1$ la différence de masse entre les deux points matériels et L la distance qui sépare le point A de l'axe Ox de symétrie du tube. On suppose qu'il n'y a aucune force de frottement à considérer dans ce problème.

Questions et réponses au verso!

1.	$(1.0 \ point)$ Déterminer les deux équations scalaires du mouvement des points matériels de
	masse m_1 et m_2 , résultant de la projection des lois vectorielles du mouvement de ces points
	matériels le long de l'axe Ox de symétrie du tube, en termes des coordonnées de positions
	x_1 et x_2 , des dérivées temporelles de ces coordonnées de position et des grandeurs scalaires
	constantes $m_1, m_2, g, \alpha, k, \ell_0$:

2. (1.0 point) Compte tenu des conditions initiales $x_1(0) = -d$ et $x_2(0) = d$ sur les coordonnées de position et les conditions initiales $\dot{x}_1(0) = \dot{x}_2(0) = 0$ sur les coordonnées de vitesse, déterminer l'évolution temporelle de la coordonnée $X_G(t)$ du centre de masse et l'évolution temporelle de la coordonnée $x_G(t)$ du centre de masse et l'évolution temporelle de la coordonnée relative x(t), définies respectivement comme,

$$X_G = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \qquad \text{et} \qquad x = x_2 - x_1$$

en termes du temps t et des constantes $g, d, \ell_0, \alpha, k, M, \Delta m$ et μ .

 $X_G(t) = \dots$ $x(t) = \dots$

3. (1.0 point) En prenant comme référence d'énergie potentielle gravitationnelle la droite horizontale qui passe par les points A et O et comme référence d'énergie potentielle élastique l'état du ressort au repos, déterminer l'énergie cinétique T et l'énergie potentielle V du système de points matériels en termes des coordonnées de position X_G et x, des coordonnées de vitesse \dot{X}_G et \dot{x} et des grandeurs scalaires constantes M, μ , g, α , k, ℓ_0 :

 $T = \dots$

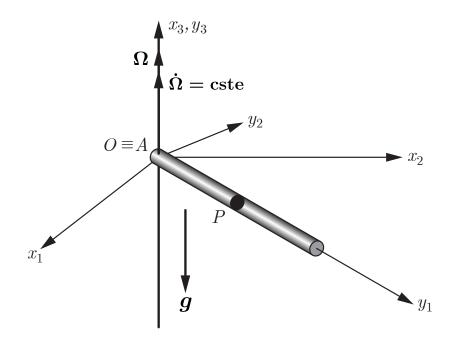
 $V = \dots$

4. (0.5 point) Déterminer l'expression vectorielle du moment cinétique L_A du système de points matériels évalué au point A en termes des grandeurs scalaires constantes M, L, de la coordonnée de vitesse du centre de masse \dot{X}_G ou de la coordonnée de vitesse relative \dot{x} et d'un vecteur unitaire du repère cartésien $(O, \hat{x}, \hat{y}, \hat{z})$ (n.b. signe inclus) :

 $L_A = \dots$

2. Centrifugeuse accélérée (3.5/10 points)

Nom:										_		_	 ı
Prénom :	Π	Τ	Г	Г					\mathbf{N}° Sciper:				



On considère une centrifugeuse constituée d'un tube tournant dans un plan horizontal avec une accélération angulaire $\dot{\Omega} = \dot{\Omega} \hat{x}_3$ constante et une vitesse angulaire $\Omega = \Omega \hat{x}_3$ autour de son extrémité située au point O. Un point matériel P de masse m est astreint à se déplacer le long du tube. On associe au référentiel absolu de la centrifugeuse le repère absolu $(O, \hat{x}_1, \hat{x}_2, \hat{x}_3)$ et au référentiel relatif du tube le repère relatif $(O, \hat{y}_1, \hat{y}_2, \hat{y}_3)$ où l'axe Oy_1 est orienté le long du tube. Le point matériel est soumis au champ gravitationnel $g = -g \hat{x}_3$ et à l'action d'une force de frottement visqueux $F_f = -\frac{m}{\tau} v_r(P)$ où τ est le temps d'amortissement et $v_r(P)$ est la vitesse relative du point matériel.

Questions et réponses au verso!

1.	(1.5 point) Dans le référentiel relatif du tube, établir les expressions vectorielles de la force
	centrifuge F_c , de la force de Coriolis F_C et de la force d'Euler F_E en termes des coordonnées
	cartésiennes de position relative, des coordonnées cartésiennes de vitesse relative, des grandeurs
	scalaires $m, \Omega, \dot{\Omega}$ et des vecteurs unitaires du repère relatif cartésien $(O, \hat{y}_1, \hat{y}_2, \hat{y}_3)$ (n.b. signe
	inclus):

F_c	=	 	 	 	 	 	
F_{C}	=	 	 	 	 	 	
F_{r}	, =						

2. (1.0 point) Dans le référentiel relatif du tube, déterminer l'équation scalaire du mouvement le long de l'axe de coordonnées relatif Oy_1 et l'expression vectorielle de la force de réaction normale du tube N en termes des coordonnées cartésiennes de position relative et de leurs dérivées temporelles, des grandeurs scalaires $m, g \tau, \Omega, \dot{\Omega}$ et des vecteurs unitaires du repère relatif cartésien $(O, \hat{y}_1, \hat{y}_2, \hat{y}_3)$ (n.b. signe inclus) :

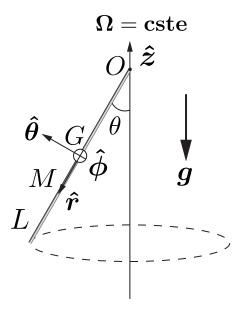
selon	$\hat{m{y}}_1$:
N =	

3. (1.0 point) Dans la limite où la norme de la force centrifuge est négligeable par rapport à la norme de la force de frottement visqueux, i.e. $||F_c|| \ll ||F_f||$, déterminer l'équation horaire $y_1(t)$ le long du tube compte tenu des conditions initiales $y_1(0) = 0$ et $\dot{y}_1(0) = v_1$ en termes de v_1 et d'autres grandeurs scalaires.

$y_1(t)$	=	=	
----------	---	---	--

3. Barre en précession (3/10 points)

Nom:												
			 _		_				\mathbf{N}° Sciper :			
Prénom:												



Une barre indéformable et homogène de masse M, de longueur L, d'épaisseur e négligeable, i.e. $e \ll L$, est fixée à l'une de ses extrémité au point O. L'orientation de la barre fait un angle $\theta = \operatorname{cste}$ avec l'axe vertical passant par l'origine O. La barre est en rotation autour de cet axe vertical à vitesse angulaire $\Omega = \Omega \hat{z} = \operatorname{cste}$ où \hat{z} est le vecteur unitaire vecteur orienté vers le haut. Soit $\left(G, \hat{r}, \hat{\theta}, \hat{\phi}\right)$ le repère d'inertie sphérique lié à la barre et g la norme du champ gravitationnel g. Le moment d'inertie de la barre rapport à l'axe principal d'inertie radial $G\hat{r}$ passant par son centre de masse G est négligeable, i.e. $I_{G,r} = 0$. Les moments d'inertie de la barre par rapport aux axes principaux d'inertie nodal $G\hat{\theta}$ et azimutal $G\hat{\phi}$ passant par son centre de masse G sont égaux et s'écrivent $I_{G,\theta} = I_{G,\phi} = \frac{1}{12} ML^2$. On considère qu'il n'y a pas de frottement.

Questions et réponses au verso!

1.	$(\mathbf{0.5\ point})$ Etablir l'expression vectorielle du moment cinétique \mathbf{L}_G de la barre évaluée par rapport à son centre de masse G en termes des grandeurs scalaires M, L, Ω, θ et des vecteurs unitaires du repère d'inertie sphérique $\left(G, \hat{r}, \hat{\theta}, \hat{\phi}\right)$ (n.b. signe inclus) :
	$oldsymbol{L}_G =$
2.	(1.0 point) Etablir l'expression vectorielle du moment cinétique L_O de la barre évaluée par rapport à l'origine O en termes des grandeurs scalaires M, L, Ω, θ et des vecteurs unitaires du repère d'inertie sphérique $\left(G, \hat{r}, \hat{\theta}, \hat{\phi}\right)$ (n.b. signe inclus) :
	$oldsymbol{L}_O =$
3.	$(1.0~{f point})$ A l'aide d'un théorème de dynamique du solide indéformable, déterminer l'angle $\theta=$ cste que fait la barre avec l'axe de rotation vertical en termes de grandeurs scalaires constantes données dans l'énoncé :
	$\theta = \dots$
4.	$({f 0.5~point})$ Par rapport au référentiel d'inertie du sol, déterminer l'expression de l'énergie cinétique T de la barre en termes des grandeurs scalaires constantes M,L,Ω et $\theta.$
	$T = \dots$